3DLife

3DLife

Emulating life in 3D with digital and experimental tissue models.

Project overview

Project lead: Berit Løkensgard Strand
Institution: NTNU
Duration: Start-up 2017

Publications

 

3DLife: Validating new high-throughput methods for 3D cell culture screening (2019)
Andrea Draget Hoel, Hanne Haslene-Hox, Øystein Arlov, Geir Klinkenberg, Anette Vikenes, Andreas Åslund, Wenche I. Strand, Anita Akbarzadeh, Daria Zaytseva-Zotova, Berit Løkensgard Strand, Håvard Sletta

Alginate hydrogels with tailored mechanical and biological properties for 3D fibroblast culture (2019)
Daria Zaytseva-Zotova, Rita Ruohola, Wenche Iren Strand, Anita Akbarzadeh, Hanne Haslene-Hox, Øystein Arlov, Anette Vikenes, Andrea Draget Hoel, Øyvind Halaas, Pål Sætrom, Geir Klinkenberg, Finn Lillelund Aachmann, Håvard Sletta, Berit Løkensgard Strand

Optimizing alginate gelation conditions for 3D cell culture (2019)
Daria Zaytseva-Zotova, Wenche Iren Strand, Anita Akbarzadeh, Rita Rouhola, Hanne Haslene-Hox, Øystein Arlov, Anette Vikenes, Andrea Draget Hoel, Geir Klinkenberg, Håvard Sletta, Berit Løkensgard Strand

Soft alginate hydrogels modified with bioactive peptides as extracellular matrices for 3D fibroblast culture (2019)
Daria Zaytseva-Zotova, Rita Ruohola, Wenche Iren Strand, Anita Akbarzadeh, Hanne Haslene-Hox, Øystein Arlov, Anette Vikenes, Andrea Draget Hoel, Geir Klinkenberg, Finn Lillelund Aachmann, Håvard Sletta, Berit Løkensgard Strand

Alginate enzymatic and chemical modification and their use in biomedical applications (2019)
Berit Løkensgard Strand

Mechanical Properties of Ca-Saturated Hydrogels with Functionalized Alginate (2019)
Marianne Øksnes Dalheim, Line Aanerud Omtvedt, Isabel M. Bjørge, Anita Akbarzadeh, Joao F. Mano, Finn Lillelund Aachmann, Berit Løkensgard Strand

#152: Vev-på-chip (2019)

Tissue engineering with hydrogels – building 3D tissue structures with alginate (2018)
Berit Løkensgard Strand

Alginate-based biomimetic matrices for 3D cell culture and high throughput screening (2018)
Daria Zaytseva-Zotova, Wenche Iren Strand, Anita Akbarzadeh, Hanne Haslene-Hox, Øystein Arlov, Anette Vikenes, Anette Draget Hoel, Geir Klinkenberg, Finn Lillelund Aachmann, Berit Løkensgard Strand

Tett på livet med digital forskning (2018)

 

All results in the CRIStin-database

Research group

Cell culture-based experiments are important pillars in all medically related research, allowing examination of living cells without the use of research animals or human subjects. However, the commonly used cellular monolayer cultures are a remote reflection of in vivo conditions, due to a lack of the cellular, structural and chemical elements forming the tissue microenvironment. This disparity results in cells losing their tissue-like phenotype over time, limiting the potential of the models for studying tissue biology and disease progression, and for testing pharmaceutic and toxic compounds.

3DLife aims to develop novel strategies for microtissue engineering in 3D, to provide model systems of organ function and bridge the gap to in vivo conditions. To understand how the microenvironment affects cells we will synthesize novel and tuneable extracellular scaffold materials, and develop tools for high-throughput screening (HTS) of 3D cell cultures to assess genetic expression patterns in response to defined scaffold properties. These advances have limited translational potential without a digital approach that can process the vast data output from HTS analyses and provide a systems-level understanding of material-cell interactions. By applying a computational model, we can predict the requirements of organotypic cells to their microenvironment and tailor materials for improved in vivo-like tissue and organ models for research and clinical applications beyond the state of the art. To achieve this ambitious goal, 3DLife brings in expert competence within material engineering, high-throughput analyses, transcriptomics and bioinformatics, cell biology and cultivation, microsystem technology and mathematical and computational modelling from NTNU and SINTEF supported by international academic collaboration. The project will contribute to the Centre for Digital Life Norway (DLN) with new knowledge, materials and methodology with a broad field of application in biotechnology.

    Latest news from the project